

    
      
          
            
  
Atomos

Atomic primitives for Python.

Atomos is a library of atomic primitives, inspired by Java’s java.util.concurrent.atomic. It provides atomic types for bools, ints, longs, and floats as well as a generalized object wrapper. In addition, it introduces atoms [http://clojure.org/atoms], a concept Clojure programmers will be familiar with.


Installation

Atomos is available via PyPI.

$ pip install atomos








Usage

A short tutorial is presented in the README [https://github.com/maxcountryman/atomos#usage].




API


	
class atomos.atom.Atom(state)

	Atom object type.

Atoms store mutable state and provide thread-safe methods for retrieving
and altering it. This is useful in multi-threaded contexts or any time an
application makes use of shared mutable state. By using an atom, it is
possible to ensure that the read and write operations are always
consistent.

For example, if an application uses a dictionary to store state, using an
atom will guarantee that the dictionary is never in an inconsistent state
as it is being updated:

>>> state = Atom({'active_conns': 0, 'clients': set([])})
>>> def new_client(cur_state, client):
...     cur_state['clients'].add(client)
...     cur_state['active_conns'] += 1
...     return cur_state
>>> state.swap(new_client, 'foo')





In the above example we use an atom to store state about connections. Our
mutation function, new_client is a function which takes the existing
state contained by the atom and a new client. Any part of our program which
reads the atom’s state by using deref will always see a consistent view
of its value.

This is particularly useful when altering shared mutable state which cannot
be changed atomically. Atoms enable atomic semantics for such objects.

Because atoms are themselves refs and inherit from ARef, it is also
possible to add watches to them. Watches can be thought of callbacks which
are invoked when the atom’s state changes.

For example, if we would like to log each time a client connects, we can
write a watch that will be responsible for this and then add it to the
state atom:

>>> state = Atom({'active_conns': 0, 'clients': set([])})
>>> def log_new_clients(k, ref, old, new):
...     if not new['active_conns'] > old['active_conns']:
...         return
...     old_clients = old['clients']
...     new_clients = new['clients']
...     print 'new client', new_clients.difference(old_clients)
>>> state.add_watch('log_new_clients', log_new_clients)





We have added a watch which will print out a message when the client count
has increased, i.e. a client has been added. Note that for a real world
application, a proper logging facility should be preferred over print.

Watches are keyed by the first value passed to add_watch and are invoked
whenver the atom changes with the key, reference, old state, and new state
as parameters.

Note that watch functions may be called from multiple threads at once and
therefore their ordering is not guaranteed. For instance, an atom’s state
may change, and before the watches can be notified another thread may alter
the atom and trigger notifications. It is possible for the second thread’s
notifications to arrive before the first’s.


	
compare_and_set(oldval, newval)

	Given oldval and newval, sets the atom’s value to newval if and
only if oldval is the atom’s current value. Returns True upon
success, otherwise False.





	Parameters:	
	oldval – The old expected value.

	newval – The new value which will be set if and only if oldval









equals the current value.






	
deref()

	Returns the value held.






	
reset(newval)

	Resets the atom’s value to newval, returning its old value.





	Parameters:	newval – The new value to set.










	
swap(fn, *args, **kwargs)

	Given a mutator fn, calls fn with the atom’s current state, args,
and kwargs. The return value of this invocation becomes the new value
of the atom. Returns the new value.





	Parameters:	fn – A function which will be passed the current state. Should





return a new state. This absolutely MUST NOT mutate the reference to
the current state! If it does, this function map loop indefinitely.
:param *args: Arguments to be passed to fn.
:param **kwargs: Keyword arguments to be passed to fn.










	
class atomos.atom.ARef

	Ref object super type.

Refs may hold watches which can be notified when a value a ref holds
changes. In effect, a watch is a callback which receives the key,
object reference, oldval, and newval.

For example, a watch function could be constructed like this:

>>> def watch(k, ref, old, new):
...     print k, ref, old, new
>>> aref = ARef()
>>> aref.add_watch(watch)





However note that ARef should generally be subclassed, a la Atom, as it
does not independently hold any value and functions merely as a container
for the watch semantics.


	
add_watch(*args, **kwargs)

	Adds key to the watches dictionary with the value fn.





	Parameters:	
	key – The key for this watch.

	fn – The value for this watch, should be a function. Note that









this function will be passed values which should not be mutated wihtout
copying as other watches may in turn be passed the same reference!






	
get_watches()

	Returns the watches dictionary.






	
notify_watches(oldval, newval)

	Passes oldval and newval to each fn in the watches dictionary,
passing along its respective key and the reference to this object.





	Parameters:	
	oldval – The old value which will be passed to the watch.

	newval – The new value which will be passed to the watch.














	
remove_watch(*args, **kwargs)

	Removes key from the watches dictionary.





	Parameters:	key – The key of the watch to remove.














	
class atomos.atomic.AtomicReference(value=None)

	A reference to an object which allows atomic manipulation semantics.

AtomicReferences are particularlly useful when an object cannot otherwise
be manipulated atomically.


	
compare_and_set(expect, update)

	Atomically sets the value to update if the current value is equal to
expect.





	Parameters:	
	expect – The expected current value.

	update – The value to set if and only if expect equals the









current value.






	
get()

	Returns the value.






	
get_and_set(value)

	Atomically sets the value to value and returns the old value.





	Parameters:	value – The value to set.










	
set(value)

	Atomically sets the value to value.





	Parameters:	value – The value to set.














	
class atomos.atomic.AtomicBoolean(value=False)

	A boolean value whichs allows atomic manipulation semantics.


	
get()

	Returns the value.










	
class atomos.atomic.AtomicInteger(value=0)

	An integer value which allows atomic manipulation semantics.






	
class atomos.atomic.AtomicLong(value=0L)

	A long value which allows atomic manipulation semantics.






	
class atomos.atomic.AtomicFloat(value=0.0)

	A float value which allows atomic manipulation semantics.








API Multiprocessing


	
class atomos.multiprocessing.atomic.AtomicReference

	




	
class atomos.multiprocessing.atomic.AtomicBoolean(value=False)

	A boolean value whichs allows atomic manipulation semantics.


	
get()

	Returns the value.










	
class atomos.multiprocessing.atomic.AtomicInteger(value=0)

	An integer value which allows atomic manipulation semantics.






	
class atomos.multiprocessing.atomic.AtomicLong(value=0L)

	A long value which allows atomic manipulation semantics.






	
class atomos.multiprocessing.atomic.AtomicFloat(value=0.0)

	A float value which allows atomic manipulation semantics.











          

      

      

    

  

    
      
          
            

   Python Module Index


   
   a
   


   
     		 	

     		
       a	

     
       	
       	
       atomos	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | C
 | D
 | G
 | N
 | R
 | S
 


A


  	
      	add_watch() (atomos.atom.ARef method)


      	ARef (class in atomos.atom)


      	Atom (class in atomos.atom)


      	AtomicBoolean (class in atomos.atomic)

      
        	(class in atomos.multiprocessing.atomic)


      


      	AtomicFloat (class in atomos.atomic)

      
        	(class in atomos.multiprocessing.atomic)


      


  

  	
      	AtomicInteger (class in atomos.atomic)

      
        	(class in atomos.multiprocessing.atomic)


      


      	AtomicLong (class in atomos.atomic)

      
        	(class in atomos.multiprocessing.atomic)


      


      	AtomicReference (class in atomos.atomic)

      
        	(class in atomos.multiprocessing.atomic)


      


      	atomos (module)


  





C


  	
      	compare_and_set() (atomos.atom.Atom method)

      
        	(atomos.atomic.AtomicReference method)


      


  





D


  	
      	deref() (atomos.atom.Atom method)


  





G


  	
      	get() (atomos.atomic.AtomicBoolean method)

      
        	(atomos.atomic.AtomicReference method)


        	(atomos.multiprocessing.atomic.AtomicBoolean method)


      


  

  	
      	get_and_set() (atomos.atomic.AtomicReference method)


      	get_watches() (atomos.atom.ARef method)


  





N


  	
      	notify_watches() (atomos.atom.ARef method)


  





R


  	
      	remove_watch() (atomos.atom.ARef method)


  

  	
      	reset() (atomos.atom.Atom method)


  





S


  	
      	set() (atomos.atomic.AtomicReference method)


  

  	
      	swap() (atomos.atom.Atom method)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		Atomos


      


    
  

_static/minus.png





_static/up-pressed.png





_static/down-pressed.png





_static/down.png





_static/comment.png





_static/plus.png





_static/ajax-loader.gif





_static/up.png





_static/comment-bright.png





_static/file.png





_static/comment-close.png





