
Atomos Documentation
Release 0.3.1

Max Countryman

January 12, 2017

Contents

1 Installation 3

2 Usage 5

3 API 7

4 API Multiprocessing 11

Python Module Index 13

i

ii

Atomos Documentation, Release 0.3.1

Atomic primitives for Python.

Atomos is a library of atomic primitives, inspired by Java’s java.util.concurrent.atomic. It provides atomic types for
bools, ints, longs, and floats as well as a generalized object wrapper. In addition, it introduces atoms, a concept Clojure
programmers will be familiar with.

Contents 1

http://clojure.org/atoms

Atomos Documentation, Release 0.3.1

2 Contents

CHAPTER 1

Installation

Atomos is available via PyPI.

$ pip install atomos

3

Atomos Documentation, Release 0.3.1

4 Chapter 1. Installation

CHAPTER 2

Usage

A short tutorial is presented in the README.

5

https://github.com/maxcountryman/atomos#usage

Atomos Documentation, Release 0.3.1

6 Chapter 2. Usage

CHAPTER 3

API

class atomos.atom.Atom(state)
Atom object type.

Atoms store mutable state and provide thread-safe methods for retrieving and altering it. This is useful in multi-
threaded contexts or any time an application makes use of shared mutable state. By using an atom, it is possible
to ensure that read values are always consistent and that write values do not yield unexpected state (e.g. data
loss).

For example, if an application uses a dictionary to store state, using an atom will guarantee that the dictionary
is never in an inconsistent state as it is being updated:

>>> state = Atom({'active_conns': 0, 'clients': set([])})
>>> def new_client(cur_state, client):
... new_state = cur_state.copy()
... new_state['clients'].add(client)
... new_state['active_conns'] += 1
... return new_state
>>> state.swap(new_client, 'foo')

In the above example we use an atom to store state about connections. Our mutation function, new_client is a
function which takes the existing state contained by the atom and a new client. Any part of our program which
reads the atom’s state by using deref will always see a consistent view of its value.

This is particularly useful when altering shared mutable state which cannot be changed atomically. Atoms
enable atomic semantics for such objects.

Because atoms are themselves refs and inherit from ARef, it is also possible to add watches to them. Watches
can be thought of as callbacks which are invoked when the atom’s state changes.

For example, if we would like to log each time a client connects, we can write a watch that will be responsible
for this and then add it to the state atom:

>>> state = Atom({'active_conns': 0, 'clients': set([])})
>>> def log_new_clients(k, ref, old, new):
... if not new['active_conns'] > old['active_conns']:
... return
... old_clients = old['clients']
... new_clients = new['clients']
... print 'new client', new_clients.difference(old_clients)
>>> state.add_watch('log_new_clients', log_new_clients)

We have added a watch which will print out a message when the client count has increased, i.e. a client has been
added. Note that for a real world application, a proper logging facility should be preferred over print.

7

Atomos Documentation, Release 0.3.1

Watches are keyed by the first value passed to add_watch and are invoked whenever the atom changes with the
key, reference, old state, and new state as parameters.

Note that watch functions may be called from multiple threads at once and therefore their ordering is not guar-
anteed. For instance, an atom’s state may change, and before the watches can be notified another thread may
alter the atom and trigger notifications. It is possible for the second thread’s notifications to arrive before the
first’s.

compare_and_set(oldval, newval)
Given oldval and newval, sets the atom’s value to newval if and only if oldval is the atom’s current value.
Returns True upon success, otherwise False.

Parameters

• oldval – The old expected value.

• newval – The new value which will be set if and only if oldval equals the current value.

deref()
Returns the value held.

reset(newval)
Resets the atom’s value to newval, returning newval.

Parameters newval – The new value to set.

swap(fn, *args, **kwargs)
Given a mutator fn, calls fn with the atom’s current state, args, and kwargs. The return value of this
invocation becomes the new value of the atom. Returns the new value.

Parameters

• fn – A function which will be passed the current state. Should return a new state. This
absolutely MUST NOT mutate the reference to the current state! If it does, this function
may loop indefinitely.

• *args – Arguments to be passed to fn.

• **kwargs – Keyword arguments to be passed to fn.

class atomos.atom.ARef
Ref object super type.

Refs may hold watches which can be notified when a value a ref holds changes. In effect, a watch is a callback
which receives the key, object reference, oldval, and newval.

For example, a watch function could be constructed like this:

>>> def watch(k, ref, old, new):
... print k, ref, old, new
>>> aref = ARef()
>>> aref.add_watch(watch)

However note that ARef should generally be subclassed, a la Atom, as it does not independently hold any value
and functions merely as a container for the watch semantics.

add_watch(*args, **kwargs)
Adds key to the watches dictionary with the value fn.

Parameters

• key – The key for this watch.

8 Chapter 3. API

Atomos Documentation, Release 0.3.1

• fn – The value for this watch, should be a function. Note that this function will be passed
values which should not be mutated wihtout copying as other watches may in turn be
passed the same eference!

get_watches()
Returns the watches dictionary.

notify_watches(oldval, newval)
Passes oldval and newval to each fn in the watches dictionary, passing along its respective key and the
reference to this object.

Parameters

• oldval – The old value which will be passed to the watch.

• newval – The new value which will be passed to the watch.

remove_watch(*args, **kwargs)
Removes key from the watches dictionary.

Parameters key – The key of the watch to remove.

class atomos.atomic.AtomicReference(value=None)
A reference to an object which allows atomic manipulation semantics.

AtomicReferences are particularlly useful when an object cannot otherwise be manipulated atomically.

compare_and_set(expect, update)
Atomically sets the value to update if the current value is equal to expect.

Parameters

• expect – The expected current value.

• update – The value to set if and only if expect equals the current value.

get()
Returns the value.

get_and_set(value)
Atomically sets the value to value and returns the old value.

Parameters value – The value to set.

set(value)
Atomically sets the value to value.

Parameters value – The value to set.

class atomos.atomic.AtomicBoolean(value=False)
A boolean value whichs allows atomic manipulation semantics.

get()
Returns the value.

class atomos.atomic.AtomicInteger(value=0)
An integer value which allows atomic manipulation semantics.

class atomos.atomic.AtomicLong(value=0L)
A long value which allows atomic manipulation semantics.

class atomos.atomic.AtomicFloat(value=0.0)
A float value which allows atomic manipulation semantics.

9

Atomos Documentation, Release 0.3.1

10 Chapter 3. API

CHAPTER 4

API Multiprocessing

class atomos.multiprocessing.atomic.AtomicReference

class atomos.multiprocessing.atomic.AtomicBoolean(value=False)
A boolean value whichs allows atomic manipulation semantics.

get()
Returns the value.

class atomos.multiprocessing.atomic.AtomicInteger(value=0)
An integer value which allows atomic manipulation semantics.

class atomos.multiprocessing.atomic.AtomicLong(value=0L)
A long value which allows atomic manipulation semantics.

class atomos.multiprocessing.atomic.AtomicFloat(value=0.0)
A float value which allows atomic manipulation semantics.

11

Atomos Documentation, Release 0.3.1

12 Chapter 4. API Multiprocessing

Python Module Index

a
atomos, 3

13

Atomos Documentation, Release 0.3.1

14 Python Module Index

Index

A
add_watch() (atomos.atom.ARef method), 8
ARef (class in atomos.atom), 8
Atom (class in atomos.atom), 7
AtomicBoolean (class in atomos.atomic), 9
AtomicBoolean (class in ato-

mos.multiprocessing.atomic), 11
AtomicFloat (class in atomos.atomic), 9
AtomicFloat (class in atomos.multiprocessing.atomic), 11
AtomicInteger (class in atomos.atomic), 9
AtomicInteger (class in atomos.multiprocessing.atomic),

11
AtomicLong (class in atomos.atomic), 9
AtomicLong (class in atomos.multiprocessing.atomic),

11
AtomicReference (class in atomos.atomic), 9
AtomicReference (class in ato-

mos.multiprocessing.atomic), 11
atomos (module), 1

C
compare_and_set() (atomos.atom.Atom method), 8
compare_and_set() (atomos.atomic.AtomicReference

method), 9

D
deref() (atomos.atom.Atom method), 8

G
get() (atomos.atomic.AtomicBoolean method), 9
get() (atomos.atomic.AtomicReference method), 9
get() (atomos.multiprocessing.atomic.AtomicBoolean

method), 11
get_and_set() (atomos.atomic.AtomicReference method),

9
get_watches() (atomos.atom.ARef method), 9

N
notify_watches() (atomos.atom.ARef method), 9

R
remove_watch() (atomos.atom.ARef method), 9
reset() (atomos.atom.Atom method), 8

S
set() (atomos.atomic.AtomicReference method), 9
swap() (atomos.atom.Atom method), 8

15

	Installation
	Usage
	API
	API Multiprocessing
	Python Module Index

